Panel 3
Business Implications of Comparative Effectiveness

Research with stratified populations

Newell McElwee, PharmD, MSPH
U.S. Outcomes Research
Merck & Co., Inc
28 October 2009
Key Decisions in the Lifecycle of a Pharmaceutical Product

Discovery

- **Ph 1**
- **Ph 2**
- **Ph 3**

Marketing Approval

- **Launch**

- **Patent Expiration**
- **Generic**

Investment Decision
- Decision to advance from Phase 2 to Phase 3
- Stakeholder = product developer

Regulatory Decision
- Decision to approve a product for marketing
- Stakeholder = regulatory agency

Adoption/ Diffusion Decision
- Decision to adopt and use a product in a population
- Stakeholder = payer or their intermediary

Treatment Decision
- Decision to prescribe a product for an individual patient
- Stakeholder = patient and their physician
Investment Decisions

• Phase 2 – Phase 3 investment decisions are informed by financial analyses (eNPV, real options, etc.)
 • Decisions based on opportunity costs for the portfolio
 • eNPV calculations historically based mostly on PTRS*
 • Best guess estimates of the probability of adoption and treatment use
• Increasing emphasis on more granular input for prediction of adoption/diffusion and treatment decisions
 • Simulation modeling to estimate the impact of policies such as CED on adoption/diffusion and eNPV (example follows)
• Need to minimize the risk (under uncertainty) of a:
 • False Positive: Developing something we can’t sell
 • False Negative: Stopping development of a beneficial treatment

Bottom Line: Need More Accurate Estimates of eNPV

* Probability of Technical and Regulatory Success
Simple Example of a Hypothetical “Asset” in the Investment Portfolio

<table>
<thead>
<tr>
<th>Year</th>
<th>Expenses*</th>
<th>Revenue</th>
<th>Net</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$10</td>
<td>0</td>
<td>-$10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$10</td>
<td>0</td>
<td>-$10</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$20</td>
<td>0</td>
<td>-$20</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$20</td>
<td>0</td>
<td>-$20</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>$50</td>
<td>0</td>
<td>-$50</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>$70</td>
<td>0</td>
<td>-$70</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>$70</td>
<td>0</td>
<td>-$70</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>$50</td>
<td>0</td>
<td>-$50</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>$100</td>
<td>$400</td>
<td>$300</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>$100</td>
<td>$600</td>
<td>$500</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>$80</td>
<td>$730</td>
<td>$650</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>$80</td>
<td>$760</td>
<td>$680</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>$80</td>
<td>$800</td>
<td>$720</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>$80</td>
<td>$820</td>
<td>$740</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>$80</td>
<td>$840</td>
<td>$760</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>$60</td>
<td>$750</td>
<td>$690</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>$1</td>
<td>$300</td>
<td>$299</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>$1</td>
<td>$100</td>
<td>$99</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>$1</td>
<td>$50</td>
<td>$49</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>$1</td>
<td>$40</td>
<td>$39</td>
<td>5</td>
</tr>
</tbody>
</table>

* $ values in millions
** Values hypothetical, made up by me
Brief Illustration: The Impact of CED on eNPV

• Estimated Base Case eNPV* and the impact of Coverage with Evidence Development in years 9 - 11
 • Scenario 0 = Base case + probability of trial success of 0.5
 • Scenario 1 = Base case + probability of trial success of 0.7
 • Scenario 2 = Base case + probability of trial success of 0.9
• Winners get 5% “prize”, losers get 75% “penalty” in years 12 - 16
• Estimated the impact of more efficient drug development (production) costs for each scenario
• Monte Carlo simulation with 1,000 trials

* Estimated from Year 1
Scenario 0
(p trial success = 0.5)

NPV (in $100 millions)

Cumulative Frequency

Base case
CED case
CED with reduced costs
Scenario 2
\((p \text{ trial success} = 0.9) \)
Conclusions

• Loss of revenue during CED decreased eNPV from base case
• eNPV partially, but not completely, restored by better predicting “winners”
• Improved production efficiency had little impact on eNPV
Treatment Decisions: Are you like the average?
Will “niche” indications decrease eNPV?

- Number of treated patients will decrease
- Effectiveness in treated patients will increase
- Value-based pricing could maintain economic value
- Additional value created by avoidance of adverse events in patients who are not treated because they are unlikely to respond

Niche indications will NOT NECESSARILY decrease eNPV